

Ultralow Power Single/Dual Comparator with Reference

FEATURES

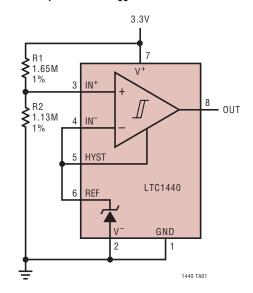
- Ultralow Quiescent Current: 2.1µA Typ (LTC1440)
- Reference Output Drives 0.01µF Capacitor
- Adjustable Hysteresis (LTC1440/LTC1442)
- Wide Supply Range: Single: 2V to 11V
 - Dual: $\pm 1V$ to $\pm 5.5V$
- Input Voltage Range Includes the Negative Supply
- TTL/CMOS Compatible Outputs
- 12μs Propagation Delay with 10mV Overdrive
- No Crowbar Current
- 40mA Continuous Source Current
- Pin Compatible Upgrades for MAX921/922/923
- 3mm x 3mm x 0.75mm DFN Package (LTC1440)

APPLICATIONS

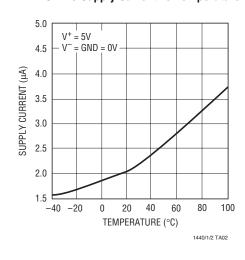
- Battery-Powered System Monitoring
- Threshold Detectors
- Window Comparators
- Oscillator Circuits

47, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTION


The LTC®1440/LTC1441/LTC1442 are ultralow power single and dual comparators with built-in references. The comparators feature less than 3.7 μ A supply current over temperature (LTC1440), a 1.182V ±1% reference, programmable hysteresis (LTC1440/LTC1442) and TTL/CMOS outputs that sink and source current. The reference output can drive a bypass capacitor of up to 0.01 μ F without oscillation.

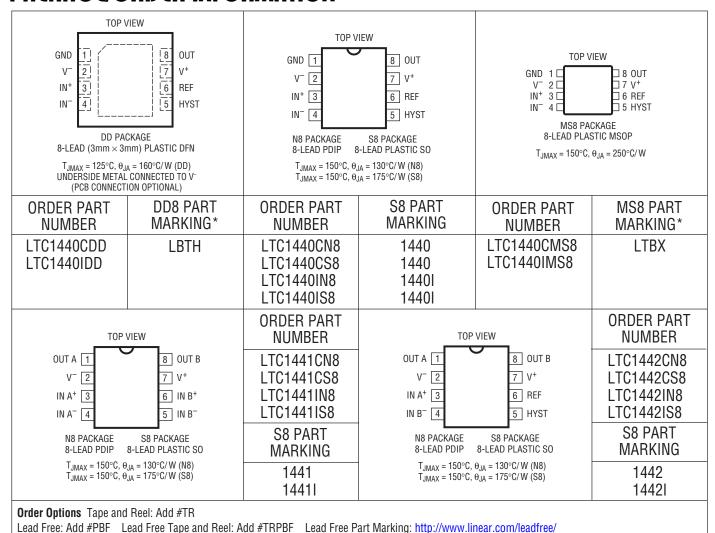
The comparators operate from a single 2V to 11V supply or a dual \pm 1V to \pm 5.5V supply (LTC1440). Comparator hysteresis is easily programmed by using two resistors and the HYST pin (LTC1440/LTC1442). Each comparator's input operates from the negative supply to within 1.3V of the positive supply. The comparator output stage can continuously source up to 40mA. By eliminating the cross-conducting current that normally happens when the comparator changes logic states, the power supply glitches are eliminated.


The LTC1440 is available in 8-pin PDIP, SO, MSOP and DFN packages. The LTC1441/LTC1442 are available in 8-pin PDIP and SO packages.

TYPICAL APPLICATION

Micropower 2.9V V_{CC} Threshold Detector

LTC1440 Supply Current vs Temperature


ABSOLUTE MAXIMUM RATINGS

(Note 1)

Voltage	
V+ to V-, V+ to GND, G	ND to V^{-} 12V to $-0.3V$
IN+, IN-, HYST	$(V^+ + 0.3V)$ to $(V^ 0.3V)$
REF	$(V^+ + 0.3V)$ to $(V^ 0.3V)$
OUT (LTC1440)	$(V^{+} + 0.3V)$ to $(GND - 0.3V)$
OUT (LTC1441/LTC1442) $(V^+ + 0.3V)$ to $(V^ 0.3V)$
Current	
IN+, IN-, HYST	20mA
REF	20mA
OUT	50mA

OUT Short-Circuit Duration (V ⁺ ≤ 5.5V)	
Power Dissipation	50011111
Operating Temperature Range	
LTC144XC	0°C to 70°C
LTC144XI	40°C to 85°C
Storage Temperature Range	. −65°C to 150°C
Storage Temperature Range	
(DD Package)	. −65°C to 125°C
Junction Temperature	150°C
Junction Temperature (DD Package)	125°C
Lead Temperature (Soldering, 10 sec).	

PACKAGE/ORDER INFORMATION

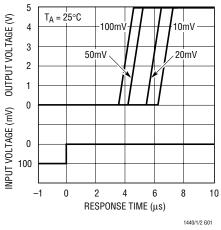
Consult LTC Marketing for parts specified with wider operating temperature ranges.

LINEAR

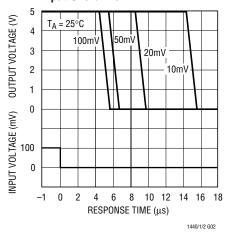
^{*} The temperature grade is identified by a label on the shipping container.

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V^+ = 5V$ and $V^- = GND = 0V$ unless otherwise noted.

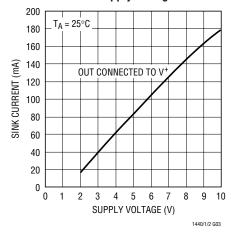
SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Power Su	ipply	1						
V+	Supply Voltage Range			•	2.0		11.0	V
I _{CC}	Supply Current	IN ⁺ = IN ⁻ + 80mV HYST = REF (LTC1440/LTC1442)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		2.1	4.0 4.4	μA μA
			LTC1441 LTC1442	•		3.5 3.5	5.7 5.7	μA μA
Compara								
V_{OS}	Comparator Input Offset Voltage	V _{CM} = 2.5V		•		±3	±10	mV
I _{IN}	Input Leakage Current (IN+, IN-) Input Leakage Current (HYST)	$V_{IN}^{+} = V_{IN}^{-} = 2.5V$		•		±0.01 ±0.02	±1.0 ±1.0	nA nA
V _{CM}	Comparator Input Common Mode Range			•	V-		V+ – 1.3V	V
CMRR	Common Mode Rejection Ratio	V ⁻ to V ⁺ – 1.3V				0.1	1	mV/V
PSRR	Power Supply Rejection Ratio	V + = 2V to 11V (LTC1441) V + = 2.5V to 11V (LTC1440/LTC	1442)			0.1 0.1	1 1	mV/V mV/V
NOISE	Voltage Noise	100Hz to 100kHz				100		μV_{RMS}
V _{HYST}	Hysteresis Input Voltage Range	LTC1440/LTC1442		•	REF – 50mV		REF	V
t _{PD}	Propagation Delay	C _{OUT} = 100pF	Overdrive = 10mV Overdrive = 100mV			15 8		μs μs V
$\overline{V_{OH}}$	Output High Voltage	$I_0 = -13 \text{mA}$		•	V+-0.4V			
V_{OL}	Output Low Voltage	I ₀ = 1.8mA	LTC1440 LTC1441/LTC1442	•			GND + 0.4V V ⁻ + 0.4V	V
Referenc	e							
V _{REF}	Reference Voltage	No Load		•	1.170 1.164		1.194 1.200	V
			LTC1440 (MSOP, DFN)	•	1.164		1.200	V
ISOURCE	Reference Output Source Current	$\Delta V_{REF} \le 1 \text{mV (LTC1442)}$		•	100			μA
ISINK	Reference Output Sink Current	$\Delta V_{REF} \le 2.5 \text{mV (LTC1442)}$			10	20		μΑ
ΔV_{REF}	Reference Source Current	$0 \le I_{SOURCE} \le 2mA \text{ (LTC1440)}$		•		0.8	5	mV
	Reference Sink Current	$0 \le I_{SINK} \le 10 \mu A \text{ (LTC1440)}$		•		0.5	1.5 5	mV mV
NOISE	Voltage Noise	100Hz to 100kHz				100		μV_{RMS}

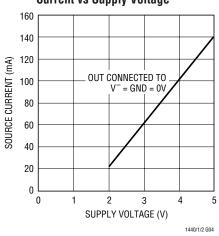

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V^+ = 3V$ and $V^- = GND = 0V$ unless otherwise noted.

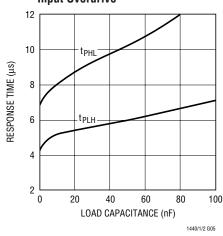
SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Power Su	upply							
V+	Supply Voltage Range			•	2		11	V
I _{CC}	Supply Current	IN+ = IN- + 80mV HYST = REF (LTC1440/LTC1442)	LTC1440 0° C \leq T _A \leq 70 $^{\circ}$ C -40° C \leq T _A \leq 85 $^{\circ}$ C			2	3.9 4.3	μA μA
			LTC1441 LTC1442	•		3.5 3.5	5.7 5.7	μA μA
Compara								
V_{OS}	Comparator Input Offset Voltage	V _{CM} = 1.5V		•		±3	±10	mV
I _{IN}	Input Leakage Current (IN+, IN-) Input Leakage Current (HYST)	$V_{IN}^{+} = V_{IN}^{-} = 1.5V$		•		±0.01 ±0.02	±1 ±1	nA nA
V _{CM}	Comparator Input Common Mode Range			•	٧-		V+-1.3V	V
CMRR	Common Mode Rejection Ratio	V ⁻ to V ⁺ – 1.3V				0.1	1	mV/V
PSRR	Power Supply Rejection Ratio	V ⁺ = 2V to 11V (LTC1441) V ⁺ = 2.5V to 11V (LTC1440/LTC	31442)			0.1 0.1	1 1	mV/V mV/V
NOISE	Voltage Noise	100Hz to 100kHz	·			100		μV _{RMS}
V_{HYST}	Hysteresis Input Voltage Range	LTC1440/LTC1442		•	REF – 50mV		REF	V
t _{PD}	Propagation Delay	C _{OUT} = 100pF	Overdrive = 10mV Overdrive = 100mV			14 5		μS μS
$\overline{V_{OH}}$	Output High Voltage	$I_0 = -8mA$		•	V+-0.4V			μs V
Compara	tor				1			
V_{OL}	Output Low Voltage	I ₀ = 0.8mA	LTC1440 LTC1441/LTC1442	•			GND + 0.4V V ⁻ + 0.4V	V V
Referenc	e							•
V _{REF}	Reference Voltage	No Load	$ \begin{array}{l} LTC1440/LTC1442 \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \end{array} $	•	1.170 1.164	1.182	1.194 1.200	V
			LTC1440 (MSOP, DFN)	•	1.164		1.200	V
SOURCE	Reference Output Source Current	$\Delta V_{REF} \le 1 \text{mV (LTC1442)}$		•	60	120		μΑ
I _{SINK}	Reference Output Sink Current	$\Delta V_{REF} \le 2.5 \text{mV (LTC1442)}$			10	20		μΑ
ΔV_{REF}	Reference Source Current	$0 \le I_{SOURCE} \le 1 \text{mA (LTC1440)}$		•		8.0	5.5	mV
	Reference Sink Current	$0 \le I_{SINK} \le 10\mu A \text{ (LTC1440)}$		•		0.5	1.5 5	mV mV
NOISE	Voltage Noise	100Hz to 100kHz				100		μV_{RMS}

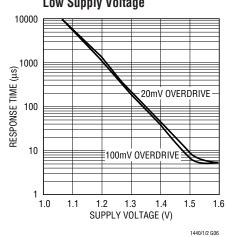

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

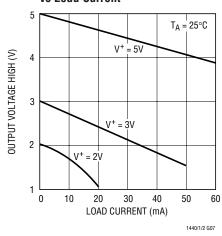
LINEAR




Comparator Response Time vs Input Overdrive

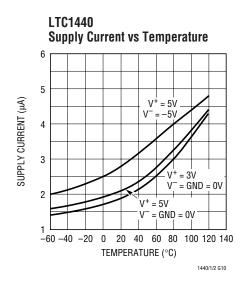

Comparator Short-Circuit Sink Current vs Supply Voltage


Comparator Short-Circuit Source Current vs Supply Voltage


Comparator Response Time vs Load Capacitance with 100mV Input Overdrive

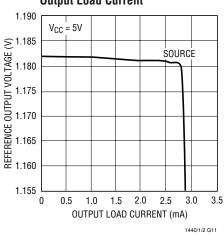
Comparator Response Time at Low Supply Voltage

Comparator Output Voltage High vs Load Current

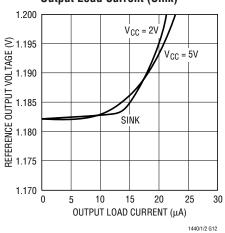


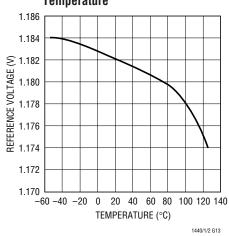
Comparator Output Voltage Low vs Load Current 2.5 T_A = 25°C 2.0 OUTPUT VOLTAGE LOW (V) $V^{+} = 3V$ $\dot{V}^+ = 2\dot{V}$ 1.5 V⁺ = 5V 1.0 0.5 0 30 40 70 80

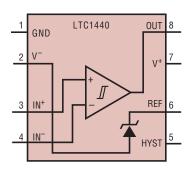
LOAD CURRENT (mA)

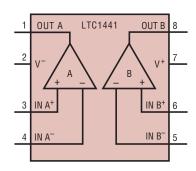

1440/1/2 G08

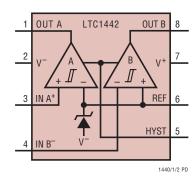
LTC1440/LTC1442 **Hysteresis Control** POSITIVE-TO-NEGATIVE INPUT VOLTAGE (mV) 60 OUTPUT HIGH 40 20 0 -20 OUTPUT LOW -60 -80 0 10 40 50 $V_{REF}-V_{HYST}\left(mV\right)$ 1440/1/2 G09






Reference Output Voltage vs Output Load Current (Sink)




Reference Voltage vs Temperature

PIN FUNCTIONS

LTC1440

GND (Pin 1): Ground. Connect to V^- for single supply operation.

V⁻(**Pin 2**): Negative Supply. Connect to ground for single supply operation. Potential should be more negative than GND.

IN⁺ (**Pin 3**): Noninverting Comparator Input. Input common mode range from V^- to V^+ –1.3V. Input current typically 10pA at 25°C.

IN⁻ (**Pin 4**): Inverting Comparator Input. Input common mode range from V⁻ to V⁺ –1.3V. Input current typically 10pA at 25°C.

HYST (Pin 5): Hysteresis Input. Connect to REF if not used. Input voltage range is from V_{REF} to $V_{REF} - 50 \text{mV}$.

REF (Pin 6): Reference Output. 1.182V with respect to V⁻. Can source up to $200\mu A$ and $\sin k$ $15\mu A$ at $25^{\circ}C$. Drive $0.01\mu F$ bypass capacitor without oscillation.

V+ (Pin 7): Positive Supply. 2V to 11V.

OUT (Pin 8): Comparator CMOS Output. Swings from GND to V⁺. Output can source up to 40mA and sink 5mA.

LTC1441

OUT A (Pin 1): Comparator A CMOS Output. Swings from V^- to V^+ . Output can source up to 40mA and sink 5mA.

V⁻ (Pin 2): Negative Supply.

IN A⁺ (Pin 3): Noninverting Input of Comparator A. Input common mode range from V^- to V^+ –1.3V. Input current typically 10pA at 25°C.

IN A⁻ (Pin 4): Inverting Input of Comparator A. Input common mode range from V^- to V^+ –1.3V. Input current typically 10pA at 25°C.

IN B $^-$ (**Pin 5**): Inverting Input of Comparator B. Input common mode range from V $^-$ to V $^+$ -1.3V. Input current typically 10pA at 25°C.

IN B $^+$ (Pin 6): Noninverting Input of Comparator B. Input common mode range from V $^-$ to V $^+$ -1.3V. Input current typically 10pA at 25°C.

V+ (Pin 7): Positive Supply. 2V to 11V.

OUT B (Pin 8): Comparator B CMOS Output. Swings from V^- to V^+ . Output can source up to 40mA and sink 5mA.

LTC1442

OUT A (Pin 1): Comparator A CMOS Output. Swings from V⁻ to V⁺. Output can source up to 40mA and sink 5mA.

V⁻ (Pin 2): Negative Supply.

IN A⁺ (Pin 3): Noninverting Input of Comparator A. Input common mode range from V^- to V^+ –1.3V. Input current typically 10pA at 25°C.

IN B $^-$ (**Pin 4**): Inverting Input of Comparator B. Input common mode range from V $^-$ to V $^+$ -1.3V. Input current typically 10pA at 25°C.

HYST (Pin 5): Hysteresis Input. Connect to REF if not used. Input voltage range is from V_{REF} to $V_{REF} - 50 \text{mV}$.

REF (Pin 6): Reference Output. 1.182V with respect to V⁻. Can source up to $200\mu A$ and sink $15\mu A$ at $25^{\circ}C$. Drive $0.01\mu F$ bypass capacitor without oscillation.

V+ (Pin 7): Positive Supply. 2V to 11V.

OUT B (Pin 8): Comparator B CMOS Output. Swings from V^- to V^+ . Output can source up to 40mA and sink 5mA.

APPLICATIONS INFORMATION

LTC1440/LTC1441/LTC1442 are a family of micropower comparators with built-in 1.182V reference. Features include programmable hysteresis (LTC1440/LTC1442), wide supply voltage range (2V to 11V) and the ability of the reference to drive up to a $0.01\mu F$ capacitor without oscillation. The comparators' CMOS outputs can source up to 40mA and the supply current glitches, that normally occur when switching logic states, have been eliminated.

Power Supplies

The comparator family operates from a single 2V to 11V supply. The LTC1440 includes a separate ground for the comparator output stage, allowing a split supply ranging from \pm 1V to \pm 5.5V. Connecting V $^-$ to GND on the LTC1440 will allow single supply operation. If the comparator output is required to source more than 1mA, or the supply source impedance is high, V $^+$ should be bypassed with a 0.1µF capacitor.

Comparator Inputs

The comparator inputs can swing from the negative supply V^- to within 1.3V max of the positive supply V^+ . The inputs can be forced 300mV below V^- or above V^+ without damage and the typical input leakage current is only $\pm 10 pA$.

Comparator Outputs

The LTC1440 comparator output swings between GND and V+ to assure TTL compatibility with a split supply. The LTC1441 and LTC1442 outputs swing between V- and V+. The outputs are capable of sourcing up to 40mA and sinking up to 5mA while still maintaining microampere quiescent currents. The output stage does not generate crowbar switching currents during transitions which helps minimize parasitic feedback through the supply pins.

Voltage Reference

The internal bandgap reference has a voltage of 1.182V referenced to V⁻. The reference accuracy is 1.5% from -40°C to 85°C. It can source up to $200\mu\text{A}$ and sink up to $20\mu\text{A}$ with a 5V supply. The reference can drive a bypass

capacitor of up to $0.01\mu F$ without oscillation and by inserting a series resistor, capacitance values up to $100\mu F$ can be used (Figure 1).

Figure 2 shows the resistor value required for different capacitor values to achieve critical damping. Bypassing the reference can help prevent false tripping of the comparators by preventing glitches on V⁺ or reference load transients from disturbing the reference output voltage.

Figure 3 shows the bypassed reference output with a square wave applied to the V^+ pin. Resistors R2 and R3 set 10mV of hysteresis voltage band while R1 damps the reference response. Note that the comparator output doesn't trip.

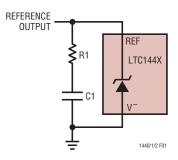


Figure 1. Damping the Reference Output

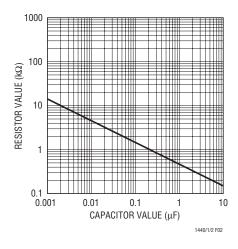


Figure 2. Damping Resistance vs Bypass Capacitor Value

LINEAR TECHNOLOGY

APPLICATIONS INFORMATION

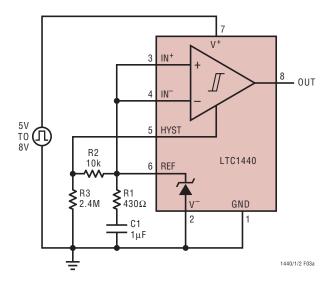


Figure 3a. Reference Transient Response Test Circuit

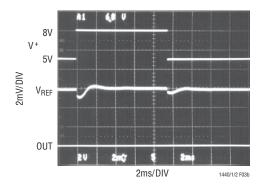


Figure 3b. Reference and Comparator Output Transient Response

Hysteresis

Hysteresis can be added to the LTC1440 by connecting a resistor (R1) between the REF and HYST pins and a second resistor (R2) from HYST to V⁻ (Figure 4).

The difference between the upper and lower threshold voltages, or hysteresis voltage band (V_{HB}), is equal to twice the voltage difference between the REF and HYST pins.

When more hysteresis is added, the upper threshold increases the same amount as the low threshold decreases. The maximum voltage allowed between REF and HYST pins is 50mV, producing a maximum hysteresis voltage band of 100mV. The hysteresis band could vary by

up to 15%. If hysteresis is not wanted, the HYST pin should be shorted to REF. Acceptable values for I_{REF} range from 0.1 μ A to 5 μ A. If 2.4M is chosen for R2, then the value of R1 is equal to the value of V_{HB} .

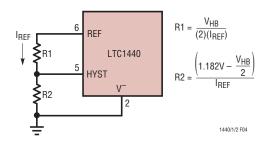


Figure 4. Programmable Hysteresis

Level Detector

The LTC1440 is ideal for use as a micropower level detector as shown in Figure 5. R1 and R2 form a voltage divider from V_{IN} to the noninverting comparator input. R3 and R4 set the hysteresis voltage, and R5 and C1 bypass the reference output. The following design procedure can be used to select the component values:

1. Choose the V_{IN} voltage trip level, in this example 4.65V.

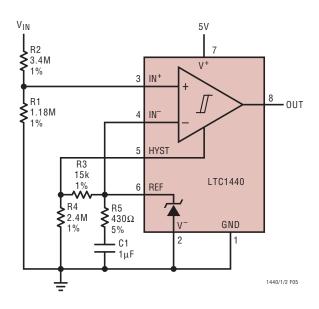


Figure 5. Glitch-Free Level Detector with Hysteresis

APPLICATIONS INFORMATION

2. Calculate the required resistive divider ratio.

Ratio =
$$V_{REF}/V_{IN}$$

Ratio = 1.182V/4.65V = 0.254

3. Choose the required hysteresis voltage band at the input V_{HBIN} , in this example 60mV. Calculate the hysteresis voltage band referred to the comparator input V_{HB} .

$$V_{HB} = (V_{HBIN})(Ratio)$$

 $V_{HB} = (60mV)(0.254)$
 $V_{HB} = 15.24mV$

4. Choose the values for R3 and R4 to set the hysteresis.

$$R4 = 2.4M$$

$$R3(k\Omega) = V_{HB} = 15k$$

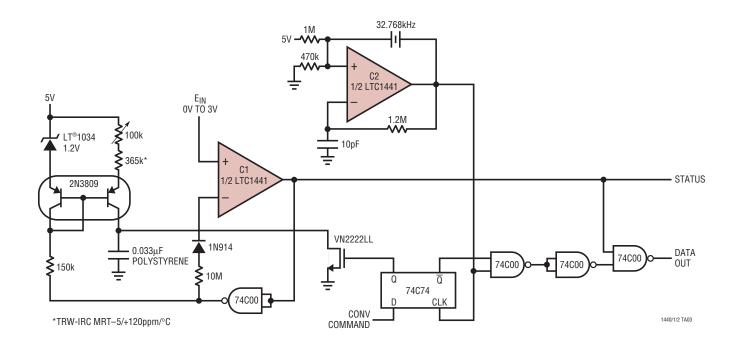
5. Choose the values for R1 and R2 to set the trip point.

$$R1 = \frac{V_{REF}}{I_{BIAS}} = \frac{1.182V}{1\mu A} = 1.18M$$

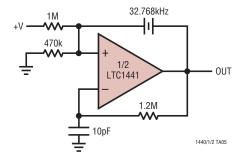
$$R2 = R1 \left[\frac{V_{IN}}{V_{REF} + \frac{V_{HB}}{2}} - 1 \right]$$

R2 = 1.18M
$$\left[\frac{4.65V}{1.182V + \frac{15mV}{2}} - 1 \right]$$

R2 = 3.40M

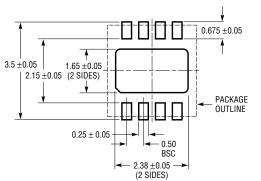

Low Voltage Operation

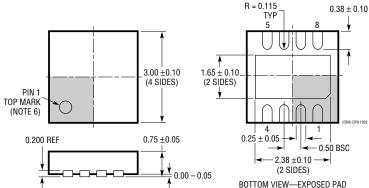
It is important to note that the voltage references internal to the LTC1440 and LTC1442 can exceed the common mode range of the comparators at low supply voltages. The input common mode range of the LTC1440/LTC1441/LTC1442 comparators is guaranteed to extend up to $(V^+$ -1.3V). Therefore, if one of the comparator inputs is at the 1.182V reference voltage, the minimum supply voltage is 2.5V for a valid output reading.


The guaranteed minimum operating voltage for the LTC1440/LTC1441/LTC1442 is 2V (or ± 1 V). However, both the reference and comparator(s) will function with a supply voltage as low as 1.5V, but performance will degrade as the voltage goes below 2V. The voltage reference temperature coefficient will degrade slightly, and the comparators will have less output drive with an increase in propagation delay. At the reduced supply voltages, the input common mode range of the comparator(s) will still typically extend from the negative supply to approximately 1.1V below the positive supply.

TYPICAL APPLICATIONS

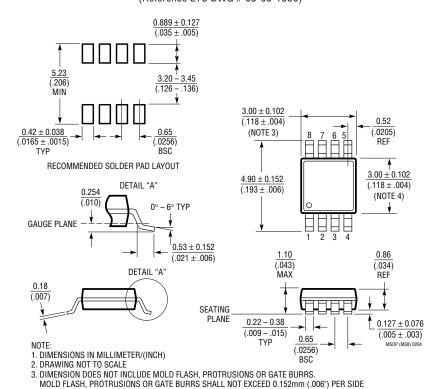
10-Bit 30µA A/D Converter


32.768kHz "Watch Crystal" Oscillator


PACKAGE DESCRIPTION

$\begin{array}{c} \textbf{DD Package} \\ \textbf{8-Lead Plastic DFN (3mm} \times \textbf{3mm)} \end{array}$

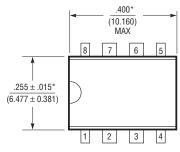
(Reference LTC DWG # 05-08-1698)

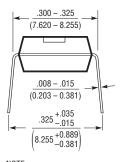

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

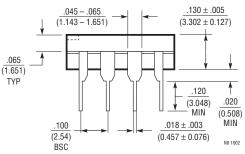
- NOTE:
 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
 MOLD FLASH, MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

MS8 Package 8-Lead Plastic MSOP

(Reference LTC DWG # 05-08-1660)

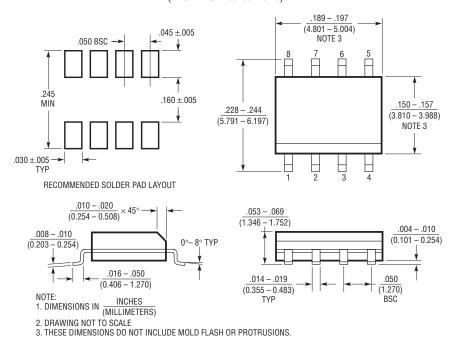

4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX


TECHNOLOGY TECHNOLOGY


PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

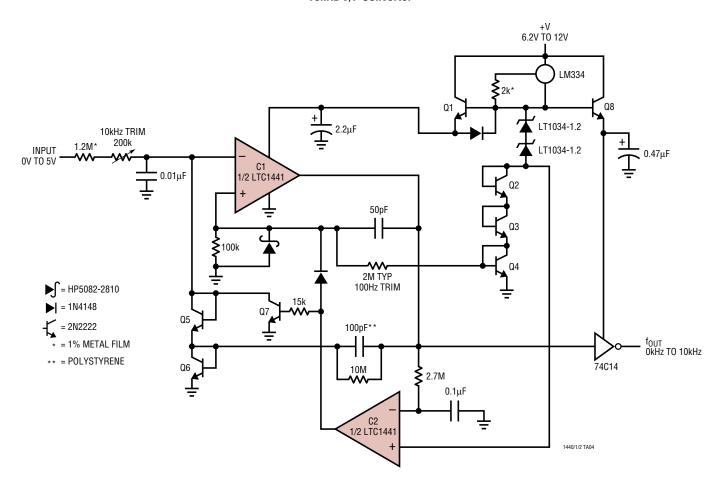


NOTE:
1. DIMENSIONS ARE MILLIMETERS

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)

(LTC DWG # 05-08-1610)

S08 0303



MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

TYPICAL APPLICATION

10kHz V/F Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1443	1.182V Reference with Micropower Quad Comparators	1% Accuracy, 8.5μA Maximum Current, Ref Output Drives 0.01μF
LTC1444/LTC1445	1.2V Reference with Quad Comparator with Adjustable Hysteresis	1% Accuracy, 8.5μA Maximum Current, Ref Output Drives 0.01μF
LTC1540	1.182V Reference with Nanopower Comparator with Adjustable Hysteresis	DFN Package 0.3µA Quiescent Current (Typical), Reference Drives 0.01µF
LTC1541	1.2V Reference with Micropower Amplifier and Comparator	DFN Package 1.25% Accuracy, Rail-to-Rail Out, Low Offset Amplifier
LTC1842/LTC1843	1.82V Reference with Dual Comparators with Adjustable Hysteresis	1% Accuracy, Open-Drain Out, Reference Drives 0.01μF
LTC1998	1.2 Reference with Comparator with Adjustable Thesholds	Li-Ion Low Battery Monitor, SOT23, 1% Accuracy
LT6700-1 LT6700-2/LT6700-3	0.4 Reference with Low Voltage Dual Comparators	SOT23, 1.4V to 18.5V Supply Range, ±2% Over Temperature

LT 0806 REV D • PRINTED IN USA © LINEAR TECHNOLOGY CORPORATION 1996