DataSheetAll » Manufacturer » Analog Devices, Inc. » AD5940 Datasheet
AD5940 Datasheet

AD5940 Datasheet

High Precision, Impedance & Electrochemical Front End
Part No.: AD5940
Page: 134 Pages
Size: 1991 KB
Manufacturer: Analog Devices, Inc.
Logo:
Views: 2
Update Time: 2024-01-10 14:55:44
DataSheet: Download

AD5940 Datasheet Applicable Part

Part No. Packing SPQ Marking MSL Pins Temp Range Package Description Buy
AD5940BCBZ-RL Reel 5000   1 56 -40°C ~ 85°C 56-Ball WLCSP (4.16 mm x 3.56 mm)  
AD5940BCBZ-RL7 Reel 1500   1 56 -40°C ~ 85°C 56-Ball WLCSP (4.16 mm x 3.56 mm)  
SPQ:Standard Pack Quantity;MSL:Moisture Sensitivity Level

AD5940 Datasheet(PDF)

AD5940 Datasheet(Picture)

AD5940 Features

  • Analog input
    • 16-bit ADC with both 800 kSPS and 1.6 MSPS options
    • Voltage, current, and impedance measurement capability
      • Internal and external current and voltage channels
      • Ultralow leakage switch matrix and input mux
    • Input buffers and programmable gain amplifier
  • Voltage DACs
    • Dual output voltage DAC with an output range of 0.2 V to 2.4 V
  • 12-bit VBIAS0 output to bias potentiostat
    • 6-bit VZERO0 output to bias TIA
    • Ultra low power: 1 µA
    • 1 high speed, 12-bit DAC
      • Output range to sensor: ±607 mV
      • Programmable gain amplifier on output with gain settings of 2 and 0.05
  • Amplifiers, accelerators, and references
    • 1 low power, low noise potentiostat amplifier suitable for potentiostat bias in electrochemical sensing
    • 1 low noise, low power TIA, suitable for measuring sensor current output
      • 50 pA to 3 mA range
      • Programmable load and gain resistors for sensor output
    • Analog hardware accelerators
      • Digital waveform generator
      • Receive filters
      • Complex impedance measurement (DFT) engine
    • 1 high speed TIA to handle wide bandwidth input signals from 0.015 Hz up to 200 kHz
    • Digital waveform generator for generation of sinusoid and trapezoid waveforms
    • 2.5 V and 1.82 V internal reference voltage sources
    • System level power savings
      • Fast power-up and power-down analog blocks for duty cycling
      • Programmable AFE sequencer to minimize workload of host controller
      • 6 kB SRAM to preprogram AFE sequences
      • Ultra low power potentiostat channel: 6.5 µAof current consumption when powered on and all other blocks in hibernate mode
    • Smart sensor synchronization and data collection
      • Cycle accurate control of sensor measurement
      • Sequencer controlled GPIOs
    • On-chip peripherals
      • SPI serial input/output
      • Wake-up timer
      • Interrupt controller
    • Power
    • 2.8 V to 3.6 V supply
    • 1.82 V input/output compliant
    • Power-on reset
    • Hibernate mode with low power DAC and potentiostat amplifier powered up to maintain sensor bias
    • Package and temperature range
    • 3.6 mm × 4.2 mm, 56-ball WLCSP
    • 7 mm × 7 mm, 48-lead LFCSP
    • Fully specified for operating temperature range of −40°C to +85°C
    • AD5940 fully specified for operating temperature range of −40°C to +85°C
    • AEC-Q100 qualified for automotive applications

AD5940 Applications

  • Electrochemical measurements
  • Electrochemical gas sensors
  • Potentiostat/amperometric/voltammetry/cyclic voltammetry
  • Bioimpedance applications
    • Skin impedance
    • Body impedance
  • Continuous glucose monitoring
  • Battery impedance

AD5940 Description

The AD5940 are high precision, low power analog front ends (AFEs) designed for portable applications that require high precision, electrochemical-based measurement techniques, such as amperometric, voltammetric, or impedance measurements. The AD5940 is designed for skin impedance and body impedance measurements, and works with the AD8233 AFE in a complete bioelectric or biopotential measurement system. The AD5940 is designed for electrochemical toxic gas sensing.

The AD5940 consist of two high precision excitation loops and one common measurement channel, which enables a wide capability of measurements of the sensor under test. The first excitation loop consists of an ultra low power, dual-output string, digital-to-analog converter (DAC), and a low power, low noise potentiostat. One output of the DAC controls the noninverting input of the potentiostat, and the other output controls the noninverting input of the transimpedance amplifier (TIA). This low power excitation loop is capable of generating signals from dc to 200 Hz.

The second excitation loop consists of a 12-bit DAC, referred to as the high speed DAC. This DAC is capable of generating high frequency excitation signals up to 200 kHz.

The AD5940 measurement channel features a 16-bit, 800 kSPS, multichannel successive approximation register (SAR) analog-to-digital converter (ADC) with input buffers, a built in antialias filter, and a programmable gain amplifier (PGA). An input multiplexer (mux) in front of the ADC allows the user to select an input channel for measurement. These input channels include multiple external current inputs, external voltage inputs, and internal channels. The internal channels allow diagnostic measurements of the internal supply voltages, die temperature, and reference voltages.

The current inputs include two TIAs with programmable gain and load resistors for measuring different sensor types. The first TIA, referred to as the low power TIA, measures low bandwidth signals. The second TIA, referred to as the high speed TIA, measures high bandwidth signals up to 200 kHz.

An ultra low leakage, programmable switch matrix connects the sensor to the internal analog excitation and measurement blocks. This matrix provides an interface for connecting external transimpedance amplifier resistors (RTIAs) and calibration resistors. The matrix can also be used to multiplex multiple electronic measurement devices to the same wearable electrodes.

A precision 1.82 V and 2.5 V on-chip reference source is available. The internal ADC and DAC circuits use this on-chip reference source to ensure low drift performance for the 1.82 V and 2.5 V peripherals.

The AD5940 measurement blocks can be controlled via direct register writes through the serial peripheral interface (SPI) interface, or, alternatively, by using a preprogrammable sequencer, which provides autonomous control of the AFE chip. 6 kB of static random access memory (SRAM) is partitioned for a deep data first in, first out (FIFO) and command FIFO. Measurement commands are stored in the command FIFO and measurement results are stored in the data FIFO. A number of FIFO related interrupts are available to indicate when the FIFO is full.

A number of general-purpose inputs/outputs (GPIOs) are available and controlled using the AFE sequencer. The AFE sequencer allows cycle accurate control of multiple external sensor devices.

The AD5940 operate from a 2.8 V to 3.6 V supply and are specified over a temperature range of −40°C to +85°C. The AD5940 is packaged in a 56-lead, 3.6 mm × 4.2 mm WLCSP.

AD5940 Datasheet Related Parts

About DataSheetAll|Contact Us|Privacy Policy|Manufacturer List|Sitemap|XML|TXT
CopyRight © 2024 DataSheetAll(datasheetall.com)